Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Viruses ; 13(11)2021 10 29.
Article in English | MEDLINE | ID: covidwho-1488760

ABSTRACT

The SARS-CoV-2 pandemic is one of the most concerning health problems around the globe. We reported the emergence of SARS-CoV-2 variant B.1.1.519 in Mexico City. We reported the effective reproduction number (Rt) of B.1.1.519 and presented evidence of its geographical origin based on phylogenetic analysis. We also studied its evolution via haplotype analysis and identified the most recurrent haplotypes. Finally, we studied the clinical impact of B.1.1.519. The B.1.1.519 variant was predominant between November 2020 and May 2021, reaching 90% of all cases sequenced in February 2021. It is characterized by three amino acid changes in the spike protein: T478K, P681H, and T732A. Its Rt varies between 0.5 and 2.9. Its geographical origin remain to be investigated. Patients infected with variant B.1.1.519 showed a highly significant adjusted odds ratio (aOR) increase of 1.85 over non-B.1.1.519 patients for developing a severe/critical outcome (p = 0.000296, 1.33-2.6 95% CI) and a 2.35-fold increase for hospitalization (p = 0.005, 1.32-4.34 95% CI). The continuous monitoring of this and other variants will be required to control the ongoing pandemic as it evolves.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Basic Reproduction Number/statistics & numerical data , Biological Evolution , Genome, Viral , Haplotypes , Humans , Mexico/epidemiology , Mutation , Nasopharynx/virology , Phylogeny , RNA, Viral , SARS-CoV-2/classification
2.
Arch Virol ; 166(11): 3173-3177, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1375645

ABSTRACT

SARS-CoV-2 variants emerged in late 2020, and at least three variants of concern (B.1.1.7, B.1.351, and P1) have been reported by WHO. These variants have several substitutions in the spike protein that affect receptor binding; they exhibit increased transmissibility and may be associated with reduced vaccine effectiveness. In the present work, we report the identification of a potential variant of interest, harboring the mutations T478K, P681H, and T732A in the spike protein, within the newly named lineage B.1.1.519, that rapidly outcompeted the preexisting variants in Mexico and has been the dominant virus in the country during the first trimester of 2021.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , COVID-19/transmission , Genome, Viral/genetics , Humans , Mexico/epidemiology , Mutation , Phylogeny , Prevalence , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics
3.
NPJ Syst Biol Appl ; 7(1): 21, 2021 05 24.
Article in English | MEDLINE | ID: covidwho-1241950

ABSTRACT

COVID-19 is an infection caused by SARS-CoV-2 (Severe Acute Respiratory Syndrome coronavirus 2), which has caused a global outbreak. Current research efforts are focused on the understanding of the molecular mechanisms involved in SARS-CoV-2 infection in order to propose drug-based therapeutic options. Transcriptional changes due to epigenetic regulation are key host cell responses to viral infection and have been studied in SARS-CoV and MERS-CoV; however, such changes are not fully described for SARS-CoV-2. In this study, we analyzed multiple transcriptomes obtained from cell lines infected with MERS-CoV, SARS-CoV, and SARS-CoV-2, and from COVID-19 patient-derived samples. Using integrative analyses of gene co-expression networks and de-novo pathway enrichment, we characterize different gene modules and protein pathways enriched with Transcription Factors or Epifactors relevant for SARS-CoV-2 infection. We identified EP300, MOV10, RELA, and TRIM25 as top candidates, and more than 60 additional proteins involved in the epigenetic response during viral infection that has therapeutic potential. Our results show that targeting the epigenetic machinery could be a feasible alternative to treat COVID-19.


Subject(s)
COVID-19/genetics , Epigenesis, Genetic/genetics , SARS-CoV-2/genetics , Transcriptome/genetics , COVID-19/virology , Gene Expression Profiling , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2/pathogenicity , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL